Refrigerants in buildings
Contents |
[edit] Introduction
Refrigerants are used in buildings:
- For heating, ventilation and air conditioning (HVAC) systems.
- To provide cooling for refrigeration.
- To provide cooling for industrial processes.
They provide cooling in a process that is essentially the same as that used in domestic fridges, based on either compression or absorption:
In compression systems, a liquid refrigerant with a low boiling point absorbs heat from the body that is being cooled and boils in an evaporator to form a gas. The resulting gas is then compressed, which increases its temperature further. The gas is then condensed, releasing its latent heat which is rejected. The process then repeats.
Absorption refrigeration works on a similar basis, with a refrigerant that boils at low temperature and pressure, however, in this case, the refrigerant gas is then absorbed in a solution which is then heated in a ‘generator’ so that the refrigerant evaporates again, but this time at a higher pressure and temperature. The gas is then condensed, releasing its latent heat which is rejected. The process then repeats. See absorption refrigeration for more information.
Typically, in heating, ventilation and air conditioning systems, chiller units use refrigerants to produce chilled water that is piped to air handling units (or fan coil units) where it is used to cool the air that ventilates the building. The ‘warmed’ water is then returned to the chiller unit to be re-cooled.
An alternative system supplies the refrigerant itself (rather than chilled water) to terminal units supplying different thermal zones. These ‘variable refrigerant flow’ (VRF) systems use a single external condensing unit and multiple internal evaporators and can be more efficient, more compact and offer greater flexibility than other HVAC systems.
The exact opposite of the refrigeration process can be achieved by heat pumps, which use refrigerants, but reverse the cycle so that heat is supplied to the building rather than cooling. Some systems are reversible, able to supple either heat or cooling.
[edit] CFCs and HCFCs
Some refrigerants have both ozone depletion potential (ODP) and global warming potential (GWP), and as a consequence refrigerants such as CFCs (chlorofluorocarbons) are banned.
For more information, see Chlorofluorocarbons CFCs.
New equipment using HCFCs (hydrochlorofluorocarbons such as R22 and R408A) was banned in 2001 (2004 for small systems), and the use of virgin HCFCs was banned in 2010, when it also became illegal to manufacture HCFC refrigerants or for suppliers to keep them in stock.
From January 1st 2015 the use of HCFCs was prohibited in any form, even for maintenance.
For morn information, see Hydrochlorofluorocarbons HCFCs.
Refrigerants such as HFCs (hydrofluorocarbons) can often by used as drop-in replacements for HCFCs however they can lead to a drop in efficiency and so may need to be supplemented with additional compressor and/or heat exchanger capacity. Badly maintained equipment or old HCFC systems may not lend themselves to conversion and could need complete replacement
[edit] F gases
Fluorinated gases (F gases) are not ozone depleting and they are often used as substitutes for CFCs and HCFCs. However they are powerful greenhouse gases (up to 20,000 times more powerful than CO2) and are listed as part of the Kyoto Protocol basket of greenhouse gases. As emissions of F gases increase, so their use is coming under greater scrutiny.
Hydrofluorocarbons (HFCs) are F gases. HFCs are commonly used in buildings and include refrigerants such as R134a, R404A, R407C, R507C and R-410A. R-410A is also member of the HFC class and composed of equally of and R-125.R32 is a HFC refrigerant, used as a replacement for R410A
Other F gases include perfluorocarbons (PFCs) and sulphur hexafluoride (SF6).
On 15 October 2016 it was announced that 170 countries in Kigali, Rwanda, had agreed that all HFCs should be phased out through an amendment to the Montreal Protocol. See HFC phase out for more information.
[edit] Alternatives
Other refrigerants include:
- Ammonia (R717). A so-called ‘natural’ refrigerant, commonly used in absorption refrigeration. Ammonia is not an ozone depleting gas or a global warming gas. However it is flammable and toxic so additional precautions are necessary in design and use.
- Non-halogenated hydrocarbons such as propane (R290), isobutane (R600a) and propylene (R1270). These are ‘natural’ and not ozone depleting but do have some global warming potential and are flammable, so additional precautions are necessary in design and use.
- Carbon dioxide (R744). This is ‘natural’ and not ozone depleting but does have some global warming potential.
- Hydrofluoro olefin (HFO) is a refrigerant but is most commonly used in automotive air conditioning systems.
- Water and air.
[edit] Leakage
It should be noted that refrigerants only have a global warming effect if they are allowed to leak to the atmosphere. This is more likely in ‘engineered’ systems than modular systems that have been hermetically sealed in the factory. Careful design, installation and maintenance can also help reduce leakage, and diagnostic and prognostic monitoring systems are available that can help detect or even predict leaks.
[edit] Related articles on Designing Buildings
- Absorption refrigeration.
- Air conditioning.
- Air conditioning inspection.
- Air handling unit.
- BREEAM Impact of refrigerants.
- Chilled beam.
- Chiller unit.
- Chilled water.
- Chlorofluorocarbons CFCs.
- Complex system.
- Cooling systems for buildings.
- Cooling tower design and construction.
- Compression refrigeration.
- Constant air volume.
- EMEA compressor market 2020 - 2023.
- Evaporative cooling.
- Fan coil unit.
- Greenhouse gas.
- HVAC.
- Hydrochlorofluorocarbons HCFCs.
- Latent heat.
- Leaks in buildings.
- Montreal Protocol.
- Ozone depleting substance.
- Phase change.
- R22 phase out.
- R404A phase out.
- Refrigerant selection.
- Refrigerants in building services guide TG 21/2022.
- US among top 2020 global variable refrigerant flow markets.
- Variable refrigerant flow.
[edit] External references
- Gov.uk Managing fluorinated gases and ozone-depleting substances. 2013
- European Commission, Fluorinated greenhouse gases.
- Star refrigeration, Use of hydrocarbon refrigerants.
Featured articles and news
HSE simplified advice for installers of stone worktops
After company fined for repeatedly failing to protect workers.
Co-located with 10th year of UK Construction Week.
How orchards can influence planning and development.
Time for knapping, no time for napping
Decorative split stone square patterns in facades.
A practical guide to the use of flint in design and architecture.
Designing for neurodiversity: driving change for the better
Accessible inclusive design translated into reality.
RIBA detailed response to Grenfell Inquiry Phase 2 report
Briefing notes following its initial 4 September response.
Approved Document B: Fire Safety from March
Current and future changes with historical documentation.
A New Year, a new look for BSRIA
As phase 1 of the BSRIA Living Laboratory is completed.
A must-attend event for the architecture industry.
Caroline Gumble to step down as CIOB CEO in 2025
After transformative tenure take on a leadership role within the engineering sector.
RIDDOR and the provisional statistics for 2023 / 2024
Work related deaths; over 50 percent from construction and 50 percent recorded as fall from height.
Solar PV company fined for health and safety failure
Work at height not properly planned and failure to take suitable steps to prevent a fall.
The term value when assessing the viability of developments
Consultation on the compulsory purchase process, compensation reforms and potential removal of hope value.
Trees are part of the history of how places have developed.